Motion of an elastic capsule in a square microfluidic channel.
نویسندگان
چکیده
In the present study we investigate computationally the steady-state motion of an elastic capsule along the centerline of a square microfluidic channel and compare it with that in a cylindrical tube. In particular, we consider a slightly over-inflated elastic capsule made of a strain-hardening membrane with comparable shearing and area-dilatation resistance. Under the conditions studied in this paper (i.e., small, moderate, and large capsules at low and moderate flow rates), the capsule motion in a square channel is similar to and thus governed by the same scaling laws with the capsule motion in a cylindrical tube, even though in the channel the cross section in the upstream portion of large capsules is nonaxisymmetric (i.e., square-like with rounded corners). When the hydrodynamic forces on the membrane increase, the capsule develops a pointed downstream edge and a flattened rear (possibly with a negative curvature) so that the restoring tension forces are increased as also happens with droplets. Membrane tensions increase significantly with the capsule size while the area near the downstream tip is the most probable to rupture when a capsule flows in a microchannel. Because the membrane tensions increase with the interfacial deformation, a suitable Landau-Levich-Derjaguin-Bretherton analysis reveals that the lubrication film thickness h for large capsules depends on both the capillary number Ca and the capsule size a; our computations determine the latter dependence to be (in dimensionless form) h ~ a(-2) for the large capsules studied in this work. For small and moderate capsule sizes a, the capsule velocity Ux and additional pressure drop ΔP+ are governed by the same scaling laws as for high-viscosity droplets. The velocity and additional pressure drop of large thick capsules also follow the dynamics of high-viscosity droplets, and are affected by the lubrication film thickness. The motion of our large thick capsules is characterized by a Ux-U ~ h ~ a(-2) approach to the undisturbed average duct velocity and an additional pressure drop ΔP+ ~a(3)/h ~ a(5). By combining basic physical principles and geometric properties, we develop a theoretical analysis that explains the power laws we found for large capsules.
منابع مشابه
Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: effects of the membrane constitutive law.
A microfluidic method is presented to measure the elastic membrane properties of a population of microcapsules with diameter of order 60 μm. The technique consists of flowing a suspension of capsules enclosed by a polymerized ovalbumin membrane through a square-section microfluidic channel with cross dimension comparable with the capsule mean diameter. The deformed profile and the velocity of a...
متن کاملC3sm27683j 4284..4296
In the present study we investigate computationally the deformation of an elastic capsule in a rectangular microfluidic channel and compare it with that of a droplet. In contrast to the bullet or parachute shape in a square or cylindrical channel where the capsule extends along the flow direction, in a rectangular channel the capsule extends mainly along the less-confined lateral direction of t...
متن کاملA numerical study of droplet deformation in a flat funnelform microchannel
Motivated by recent reported experiments, droplet deformation in a flat funnelform diverging microfluidic channel has been numerically studied. The structure of our microchannel is composed of two consecutive elements including a straight channel and a diverging channel. In this work, instead of solving the 3D Stokes equation, we solve a depth-averaged problem which is labeled two-dimensional p...
متن کاملPropionic acid extraction in a microfluidic system: simultaneous effects of channel diameter and fluid flow rate on the flow regime and mass transfer
In this work, extraction of propionic acid from the aqueous phase to the organic phase (1-octanol) was performed in T-junction microchannels and effects of channel diameter and fluid flow rate on the mass transfer characteristics were investigated. The two-phase flow patterns in studied microchannels with 0.4 and 0.8 mm diameters were observed. Weber number and surface-to-volume ratio were ca...
متن کاملDispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model
Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 84 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2011